General and programmable synthesis of hybrid liposome/metal nanoparticles

نویسندگان

  • Jin-Ho Lee
  • Yonghee Shin
  • Wooju Lee
  • Keumrai Whang
  • Dongchoul Kim
  • Luke P Lee
  • Jeong-Woo Choi
  • Taewook Kang
چکیده

Hybrid liposome/metal nanoparticles are promising candidate materials for biomedical applications. However, the poor selectivity and low yield of the desired hybrid during synthesis pose a challenge. We designed a programmable liposome by selective encoding of a reducing agent, which allows self-crystallization of metal nanoparticles within the liposome to produce stable liposome/metal nanoparticles alone. We synthesized seven types of liposome/monometallic and more complex liposome/bimetallic hybrids. The resulting nanoparticles are tunable in size and metal composition, and their surface plasmon resonance bands are controllable in visible and near infrared. Owing to outer lipid bilayer, our liposome/Au nanoparticle shows better colloidal stability in biologically relevant solutions as well as higher endocytosis efficiency than gold nanoparticles without the liposome. We used this hybrid in intracellular imaging of living cells via surface-enhanced Raman spectroscopy, taking advantage of its improved physicochemical properties. We believe that our method greatly increases the utility of metal nanoparticles in in vivo applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

To study antimicrobial and metal ion potential of Silver nanoparticles synthesized from Zingiber officinale using different solvents by EDS & TEM

Nanotechnology is new form of technology which has produced a great development in variousfields. Nanoparticles are of the great scientific interest as they are effectively a bridge between bulk material and atomic & molecular structures. Nanoparticles are the particle that have size 1 to 100 nm and possess due to large surface area to volume ratio & smaller size. Different types of nanom...

متن کامل

Synthesis and morphology characterization of SnO2 nanoparticles by hydrothermal method

Nanoparticles are widely used in different applications such as cancer cell treatment and antibacterial agents. SnO2 nanoparticles were synthesized successfully by hydrothermal method and subsequent calcination using Tin (II) chloride- dihydrate, Sodium hydroxide, in presence of Hexadecyltrimethylammoniumn bromide (CTAB) as Surfactant. These nanoparticles were characterized by using Fourier tra...

متن کامل

Synthesis and morphology characterization of SnO2 nanoparticles by hydrothermal method

Nanoparticles are widely used in different applications such as cancer cell treatment and antibacterial agents. SnO2 nanoparticles were synthesized successfully by hydrothermal method and subsequent calcination using Tin (II) chloride- dihydrate, Sodium hydroxide, in presence of Hexadecyltrimethylammoniumn bromide (CTAB) as Surfactant. These nanoparticles were characterized by using Fourier tra...

متن کامل

Cubic NiO Nanoparticles: Synthesis and Characterization

In this paper, cubic nickel oxide nanoparticles were successfully prepared by solid-state thermal decomposition of nickel(II) macrocyclic Schiff-base complex at 450°C for 3 h without employing toxic solvent or surfactant and complicated equipment. nickel(II) macrocyclic Schiff-base complex was synthesized by the reaction of 1,2-bis(2-formyl-3-methoxyphenyl)propane, NiCl2•6H2O and 1,3-phenylened...

متن کامل

Cubic NiO Nanoparticles: Synthesis and Characterization

In this paper, cubic nickel oxide nanoparticles were successfully prepared by solid-state thermal decomposition of nickel(II) macrocyclic Schiff-base complex at 450°C for 3 h without employing toxic solvent or surfactant and complicated equipment. nickel(II) macrocyclic Schiff-base complex was synthesized by the reaction of 1,2-bis(2-formyl-3-methoxyphenyl)propane, NiCl2•6H2O and 1,3-phenylened...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2016